WHAT’S NEW AND EXCITING IN ARTHROGRYPOSIOSIS

Dr. Judith G. Hall, OC, MD, FRSC, FCAHS
The University of British Columbia
Departments of Pediatrics and Medical Genetics
Child & Family Research Institute
Vancouver, BC Canada

AMC SUPPORT, INDIANAPOLIS
June 2012
No conflicts of interest
PLAN OF TALK

- Definitions
- Fetal akinesia sequence
- Many specific types – over 400
- Ways to categorize
- New findings
- Potential therapies
• Arthro = joint
 • gry = curved
 • posis = a condition

(Multiple congenital contractures)
ARTHROGRYPOSIS

Congenital nonprogressive limitation of movement of two or more joints in different body areas

1970s
CONGENITAL CONTRACTURES IN THE NEWBORN

- Clubfoot..............................1/500
- Congenital dislocated hips.....1/200–1/500
- Multiple congenital contractures....1/3000
- All congenital contractures…1/100–1/250
ARTHROGRYPOSIS (MCC) PREVALENCE

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle/Washington (JGH)</td>
<td>1970s</td>
<td>1/3,000</td>
</tr>
<tr>
<td>BC (JGH)</td>
<td>1980s</td>
<td>1/3,000</td>
</tr>
<tr>
<td>Helsinki (Laiten et al)</td>
<td>1966</td>
<td>1/3,337</td>
</tr>
<tr>
<td>Western Australia (Silbert et al)</td>
<td>1998</td>
<td>1/12,037</td>
</tr>
<tr>
<td>Sweden (Darin et al)</td>
<td>2002</td>
<td>1/5,058</td>
</tr>
<tr>
<td>Finland (Pakkasjarvi et al)</td>
<td>2006</td>
<td>1/4,206</td>
</tr>
<tr>
<td>Alberta (-TOP) (Lowry et al)</td>
<td>2010</td>
<td>1/8,713</td>
</tr>
</tbody>
</table>

1/3,000 – 1/12,000
(1/4,000 – more common than most common congenital anomalies)
Arthrogryposis is a sign, not a diagnosis!

The challenge is to make a specific diagnosis – if possible! (1970s)
FETAL AKINESIA

Fetus not moving
FETAL AKINESIA SEQUENCE
PENA SHOKIER PHENOTYPE

- Intrauterine growth retardation
- Congenital contractures of the limbs
- Hypoplastic lungs
- Short umbilical cord
- Polyhydramnios – short gut
- Craniofacial anomalies
 - Micrognathia +/- small mouth
 - +/- cleft palate
 - High bridge of nose
 - Depressed tip of nose
Identifiable Familial Forms of Pena Shokeir Phenotype/Fetal Akinesia Sequence

<table>
<thead>
<tr>
<th>Name Designation</th>
<th>Chromosome Location</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Classic Pena Shokeir syndrome</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2. Lower Motor Neuron Disorder with generalized decrease in anterior horn cells (Chen type)</td>
<td>9q34</td>
<td>GLE mRNA export</td>
</tr>
<tr>
<td>3. Lethal Congenital Contractures Syndrome Type I (LCCS-1)</td>
<td>12q13</td>
<td>medicac</td>
</tr>
<tr>
<td>4. Lethal Congenital Contracture Syndrome Type II (LCCS-2)</td>
<td>19q13</td>
<td>ERBB3</td>
</tr>
<tr>
<td>5. Lethal Congenital Contracture Syndrome Type (LCCS-3)</td>
<td>5q</td>
<td>P1P5K1C</td>
</tr>
<tr>
<td>6. Lethal Lower Motor Neuron Deficiency with degeneration</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7. Families with apparent increase in monozygotic twinning</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8. Normal in utero growth, macrocephaly and PSP (Lammer type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9. Absence of pyramidal cells, immature development, adducted thumbs, kyphoscoliosis and severe pulmonary hypoplasia (Biscegli type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10. Dysgenesis and degeneration, seizures, trismus, endocrine hyperplasia, and abdominal wall herniation (Erdl type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11. Skeletal muscle maturation defect</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12. Pyramidal tract degeneration</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>13. In utero seizures, scoliosis, together with cerebral and cerebellar hypoplasia in males (Persutte type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14. Microophthalmia, microtia, and normal birth size (Thomas type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15. Olivo-ponto-cerebellar hypoplasia</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16. Failure to myelinate peripheral nerves</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>17. Holoprosencephaly with hypokinesia and congenital contractures in an X-linked recessive pattern of inheritance</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>18. Hydranencephaly, calcification of basal ganglion and proliferative vasculopathy (Fowler type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>19. Calcification of leptomeninges, the surface of cerebral convolutions, neurons, muscles, and vessels (Illum type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20. Familial intrauterine anoxia and/or ischemia</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
• Lack of normal mechanical forces *in utero* may lead to deformations at birth
• “Use” is essential for normal development
WHAT IS NECESSARY TO MOVE?

- Central nervous system (CNS) intact and upper motor neurons working
- Spinal cord (in spinal canal)
- Anterior horn cell (motor neuron)
- Axon from AHC with myelin coat
- End plate between nerve and muscle
- Muscle
- Tendons
- Joints between bones moveable
• Over 400 specific conditions with arthrogryposis (multiple congenital joint contractures)
• Many have a genetic (hereditary) basis
• In fact, over 120 specific genes have been identified in specific conditions
• Need to know basic problem/pathway to identify appropriate therapy
WHY MAKING A SPECIFIC DIAGNOSIS IS REALLY IMPORTANT

1. Natural history - what will happen over time?
2. Recurrence risk – will this happen again in our family?
3. What is the best therapy?

See your friendly medical geneticist and ask lots of questions
HOW APPROACH CATEGORIZING ARTHROGRYPOSIS

- Body area involved
- What caused the decreased movement
- What’s not working
APPROACH TO MULTIPLE CONGENITAL CONTRACTURES - CLINICAL

- Mainly limbs
- Limbs and other body areas
- Limbs and CNS/lethal
OCCURRENCE OF ARTHROGRYPOSIS

- ~ 1/3000 – 5000 live births
- 1/3 Amyoplasia
- 1-3 Heterogeneous group of disorders
- 1/3 CNS not functioning, often – lethal
LIMITATION OF FETAL JOINT MOBILITY

MULTIPLE CONGENITAL CONTRACTURES (ARTROGRYPOSIS)
SPECIFIC RELATIVELY FREQUENT CATEGORIES OF ARTHROGRYPOSIS

- Amyoplasia
- Lower limb only
- Boney anomalies
- Distal arthrogryposes
- Pterygium syndromes
- X-linked
- CNS dysfunction
AMYOPLASIA

- A – no
- myo – muscle
- plasia – growth

(Using US or MRI it is possible to establish how much muscle tissue is present – so you know what there is to work with)
• 1980 – recognized Amyoplasia as a specific form of arthrogryposis (multiple congenital contractures)

• 135 of 350 individuals with arthrogryposis in large survey

• It is what the orthopedist called “classical arthrogryposis”
1980 – AMYOPLASIA CHARACTERIZED BY

- Typical involvement and usually of all 4 limbs
- Severe equinovarus deformity of feet, internally rotated shoulders, extended elbows, flexed wrists, contractures of fingers – typical positioning
- Absent muscle with fatty – fibrous replacement
- Deep dimples over joints
- Surprisingly good response to early physical therapy
- Normal intelligence
- No recurrence risk

(IT WAS/IS A CLINICAL DIAGNOSIS)
OVER THE LAST 30 YEARS

- Now over 540 cases
- Trunk and face mostly spared
- IUGR with decreased muscle mass – at or below 3rd centile for gestation as well short for family later in life
- Excess of one of MZ twins (9% in all subtypes)
- Vascular compromise/disruption
 - Abdominal wall, bowel atresia – 12%
 - “Smushed”/lost digits – 12%
 - Mid facial “stork mark” – most
- Affected limbs are slightly under grown
EXCESS OF MZ TWINS

- 9% of all individual among the Amyoplasia subtypes is a MZ twin as compared to 1/300 live births (1/150 individuals – 0.6%) in general population (12x increase)!
- 2% Amyoplasia patients who had early ultrasound also report a “vanished” twin (e.g., a twin was recognized, then lost)
- 70% of all MZ twins share a placenta making them susceptible to vascular compromise
DEMOGRAPHICS

• Incidence of Amyoplasia – 1/10,000 live births

• Sporadic

• Sex ratio overall equal
 – BUT excess of females with upper limb only and gastroschisis
 – Excess of males with lower limbs only, bowel atresia, and among severe and hyperextended
AMYOPLASIA NATURAL HISTORY

• 1% died in the first year (prematurity, post-surgery, respiratory, etc.)
• 30% - 40% have feeding problems early – most outgrow
• 5% have trismus and facial asymmetry
• 4% early breathing problems – usually resolve
• 3 – 4 month window of “catch up”
AMYOPLASIA NATURAL HISTORY – 2

• Osteoporosis = prone to fractures – often iatrogenic at or after birth
• Molding of bone/joint which occurs with *in utero* movement is missing – joint surfaces not rounded
• Contractures “try” to return to original position – need night splints
• 15% develop mild scoliosis over time
• 75% missed prenatally in spite of prenatal ultrasound(s)
Babies are alert, interactive, and assertive

All individuals with Amyoplasia have developmental delay because of limb involvement

3% of individuals with Amyoplasia have true intellectual disability

97% of individuals with Amyoplasia appear to be normal or high intelligence

Most families say that affected individuals are smarter than average
• 10% had been adopted (often from other countries)
• 60% had good family history information and in those
 – 3% had a history of clubfoot or dislocated hips
 – 1% had a history of someone with vascular compromise or thrombophilia
• No confirmed recurrence either to parents or affected individual when they grow up
• 26 affected individuals have 40 children (none affected)
• Affected individuals have IUGR (average at 3rd centile) at birth for gestation, but normal 50% OFC, length is often hard to measure
• Short stature – are at the 3 – 5 centile for family height later in childhood
• Continues to be under weight for age (were IUGR) probably because they have less muscle and bone density
AMYOPLASIA FUNCTIONAL OUTCOME

- 38 children (0 – 16 years) (20F, 18M)
- 84% symmetric 4 limb involvement
- All had OT, PT, multiple casts & splints
- 5.7 orthopedic procedures/child
- 85% ambulatory by 5 years
- Relatively independent in daily living
- 20% excellent response
- Growth at 5\(^{th}\) – 10\(^{th}\) centile

Sells et al., 1996
AMYOPLASIA OUTCOMES (Sweden, Seattle Clinic)

- Community ambulator 40%
- Home ambulator 45%
- Dependent 15%
SO DOUBT THE DIAGNOSIS OF AMYOPLASIA IF:

- Normal birth weight – should be IUGR (among MZ twins affected twin is 8 oz – 2 pounds less than unaffected MZ twin)
- Markedly asymmetric
- No equinovarus deformity of the feet
- No “policeman tip” position of the arms
- No nevus flammeus “stork mark” of midface
- No dimples over affected joints
- No obvious decrease of muscle mass in affected limb
- No shortening of affected limbs
- Normal flexion creases if hands are involved
LOWER LIMBS ONLY ARTHROGRIPOSIS

- Amyoplasia lower limbs only
- Angulation of long bone Syndrome
- Fuhrmann Syndrome
- Genitopatellar Syndrome
- Kuskokwim Syndrome
- Lower limb AD (Fleury type)
- Lower limb AR (Ray/Sarralde)
- Lower limb X-linked, caudal dysplasia (Zori)
- Meningomyelocele/spina bifida/spinal dysraphism
- Prenatal early amniocentesis or CVS

NEED CAREFUL DIFFERENTIAL DIAGNOSIS
BONY ANOMALIES SEEN WITH OR CONFUSED WITH ARTHROGRIPOSIS

• Chondrodysplasias - dwarfing conditions
• Symphalangism - fusion of phalanges
• Coalition - fusion of carpals or tarsals
• Synostosis - fusion of sutures or between other bones
“DISTAL” ARTHROGRYPOSIS

- Characteristic hand anomaly
- Primarily “distal” involvement
- Usually both hands and feet
- No non-orthopedic anomalies
- Usually quite responsive to therapy
- Autosomal dominant inheritance
CLASSIFICATION OF DISTAL AMCs

<table>
<thead>
<tr>
<th>Hall</th>
<th>Classification</th>
<th>Bamshad</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Distal</td>
<td>1A</td>
<td>TPM2</td>
</tr>
<tr>
<td>IIA</td>
<td>Gordon</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IIB</td>
<td>Ophthalmoplegia</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>IIC</td>
<td>Clefting</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>IID</td>
<td>Scoliosis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IIE</td>
<td>Trismus + Unusual Hand</td>
<td>7B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freeman-Sheldon Syndrome</td>
<td>2</td>
<td>MYH3</td>
</tr>
<tr>
<td></td>
<td>Sheldon-Hall</td>
<td>2B</td>
<td>TNNT3, TNN12</td>
</tr>
<tr>
<td></td>
<td>Sheldon-Hall Look Alike</td>
<td>2C</td>
<td>MYH3</td>
</tr>
<tr>
<td></td>
<td>Deafness</td>
<td>6</td>
<td>11q25</td>
</tr>
<tr>
<td></td>
<td>Trismus Pseudocamptodactyly</td>
<td>7A</td>
<td>MYH8</td>
</tr>
<tr>
<td></td>
<td>AD, Multiple Pterygium</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contractural Arachnodactyly</td>
<td>9</td>
<td>FBN2</td>
</tr>
<tr>
<td></td>
<td>Absent Teeth</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chitayat, AR</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-linked</td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stavit, S. African, Naguib</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moore-Weaver Distal</td>
<td>(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MR, DD, Wipe Out (Bad Brain)</td>
<td>(16)</td>
<td></td>
</tr>
</tbody>
</table>

1982 2011
DISTAL ARTHROGRYPOSES

- Often related to “fast twitch” muscle defect
- 8 different genes identified so far
- Autosomal dominant with variable expression
- Sometimes with facial involvement
PTERYGIUM = A “wing-like” structure
A web across body joint
A triangular membrane
PTERYGIUM SYNDROMES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>INHERITANCE</th>
<th>DISTINGUISHING FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popliteal pterygium</td>
<td>AD</td>
<td>Clefts, lip pits normal nail</td>
</tr>
<tr>
<td>Antecubital pterygium</td>
<td>AD</td>
<td>Only elbows involved</td>
</tr>
<tr>
<td>Multiple pterygium (Escobar type)</td>
<td>AR</td>
<td>Cervical vertebral anomalies, hands involved, chin-sternum pterygium, facies</td>
</tr>
<tr>
<td>Lethal multiple pterygium</td>
<td>AR</td>
<td>Extensive contractures, hypertelorism, chin-sternum pterygium, small chest</td>
</tr>
<tr>
<td>Lethal popliteal pterygium (Bartoscas Papas)</td>
<td>AR</td>
<td>Facial cleft, syndactyly (hands and feet), genital anomaly</td>
</tr>
<tr>
<td>Pterygium and ectodermal dysplasia</td>
<td>AR</td>
<td>Fine sparse hair, nail anomalies (hands and feet)</td>
</tr>
<tr>
<td>Pterygium and malignant hyperthermia</td>
<td>AR</td>
<td>Torticolis, scoliosis, MH</td>
</tr>
</tbody>
</table>

1982
MYASTHENIA SYNDROMES

• Myasthenia gravis
• Maternal myasthenia
• Congenital myasthenia
• Maternal antibodies against paternally inherited genes
• Genes for neuroreceptors
MYASTHENIA GRAVIS

- Autoimmune disorder – antibodies against own neuroreceptors
- May cross the placenta and effect embryonic/fetus neurotransmission
MULTIPLE PTERYGIUM – ESCOBAR TYPE

• 1990s Maternal antibodies against embryonic neurotransmitters lead to increasing contractures with each pregnancy (like Rh disease)

• 2000 Genes for embryonic and adult receptors identified
MULTIPLE PTERYGIUM – ESCOBAR TYPE

• 2006 Both lethal Multiple pterygium syndrome and Escobar types found to be due to mutations in the subunits of the embryonic ACh receptor (adult receptor “just fine”)

Mice with mutation responded to Tensilon

• 2010 Patients with Escobar type respond to Mestinon
X-LINKED DISORDERS

• Primarily affect males
• 1/3 new mutation, 1/3 mother carrier, 1/3 arise in maternal grandfather
• Present research project to find X-linked disorders
X-LINKED DISORDERS

p
22 Aicardi syndrome – AIC
21.3 Proud syndrome (agenesis corpus callosum, seizures, MR) – ARX
11.4 FG (4) – CNS/CASK syndrome (microcephaly, cerebellar hypoplasia) – CASK
11.23 Conradi-Hunnerman – EBP
11.23 TARP (talipes equinovarus, Robin sequence, Cardiac defect) – RBM10
11.22 Aarskog syndrome – FGD1

q
11.3 Type I severe lethal UBE
12-13 Ectodermal dysplasia/Ladda
13.1 FG (1) syndrome (tall) – MED 12
13.2 Wieacker syndrome (muscle atrophy, MR, oculomotor ataxia)
13-22 Congenital fiber disproportion myopathy
21-22 Spastic paraplegia (Goldblatt)
21.3 Proud syndrome – ARX
21.31 Miles Carpenter MR, camptodactyly, arachnodactyly, (DA 14)
22.2 Simpson Golabi Behmel II – GFD 1
22.3 FG syndrome
22.2-28 Keipert syndrome – deafness, large mouth, hypertelorism, broad phalanges
23 Lissencephaly – DCX
23-27 Zori (lower limbs only, scoliosis)
 Clasp thumb syndrome
26 Pettigrew (MR, hypotonia, scoliosis, Dandy Walker, Basal ganglion calcification) – HPRT
26.2 Simpson Golabi Behmel Type 1 – GPC3
26.3 Hydrocephaly +/- VACTERL – Z1C3
27.2 Perisylvian polymicrogyri syndrome, MR, seizures
28 FG syndrome (2) – FLNA
 Oto Palato Digital II syndrome – FLNA
 MASA (adducted thumbs, MR, shuffling gate, aqueductal stenosis) – L1CAM
 Myotubular myopathy – MTM1
 Centronuclear myopathy – MTM1

NAA10 syndrome (progeria, hypotonia, DD, cardiac arrhythmias) – NAA10
CNS DYSFUNCTION

• Structural abnormalities (MRI, CAT scan, US)
• Structures look okay, but CNS not function normally
• Seizures, unresponsive, developmental delay, lack social response
CHROMOSOMAL DISORDERS

• Extra chromosome
• Missing or extra “chunks”
• Submicroscopic “chunks”
• CGH comparative genomic hybridization
WITH CGH ARRAY ANALYSIS CAN DIAGNOSE:

• 10% Multiple congenital anomalies
• 10% Intellectual disability
• 10% Behavioural problems

VERY POWERFUL TECHNIQUE
POTENTIAL THERAPIES

1. Standard – stretching
 a) First 4 months particularly important
 b) Prevent “return to original position”
 c) Continuing stretching and splinting

2. Avoid “damage” and increased scaring

3. Specific cytokines

4. Stem cell/regenerative therapy
SPINAL MUSCULAR ATROPHY
(Werdnig Hoffman syndrome)

• Lacks anterior horn cell maintenance
• Once cells die, the attached muscle dies
• Tissues are interdependent – talk to each other
STEM CELL RESEARCH – THE FUTURE

- Lots of new work, each tissue goes through several different stages during development (embryo → fetus → newborn) and need several specific growth factors to differentiate

- AND a tissue must have cytokines/growth factors to stay differentiated
Arthrogryposis is not a diagnosis — it is a sign, but the study of arthrogryposis does give insight into the importance of embryonic/fetal movement — and hold promise for therapy.
PARENT SUPPORT GROUPS

1. Information/Education
2. Support research
3. Guidelines for care
4. Social and sharing gatherings
5. Advocacy
6. Registry – biobank (privacy)
7. Ask questions, interact with professionals, how to keep record of your child
US NATIONAL INSTITUTES OF HEALTH

- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases
- National Institute of Neurological Disorders and Stroke
- Office of Rare Diseases

- MUSCULAR DYSTROPHY ASSOCIATION
- MARCH OF DIMES
- SHRINERS ORGANIZATIONS
HOW TO GET MOVING

• Write to your congressional representatives about NIH
• Identify famous person/celebrity
• Spokesperson(s)
• Organize your messages
• Identify your advocacy activities
 – Awareness and education
 – More research
 – Funds for therapy
 – Other?
Dear Senator ______________,

My child has a form of arthrogryposis (multiple congenital contractures). One in 4,000 babies is born with arthrogryposis.

I do not understand why the NIH does not have and never has had an active program of research on this relatively common and highly disabling condition.

Most affected individuals can do well, be self-supporting and live independently if they receive an accurate diagnosis and appropriate therapy in a timely fashion.

Please do what you can to help my child.

Sincerely yours,

Attach photo